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The flow-induced Marangoni instability due to the presence of surfactant is examined
for long-wavelength perturbations. A unified view of the underlying mechanisms is
provided through revisiting both falling film and two-fluid Couette flow systems.
The analysis is performed by inspecting the corresponding coupled set of evolution
equations for the interface and surfactant concentration perturbations. While both
systems appear to have very similar sets of equations consisting of base flows and
Marangoni effects, the origins of stability/instability are identified and illustrated
from a viewpoint of vorticity. The base flow rearranges the surfactant distribution
and the induced Marangoni flow tends to stimulate the interface’s growth. But this
destabilizing effect is reduced by effects combining the interface travelling motions
and the Marangoni recoil. The competition between these opposing effects determines
the system stability, and is elucidated using equations in concert with observations
from initial value problems. Moreover, a criterion for the onset of instability can be
established in line with the same rationale. The present work not only furnishes a
lucid way to clarify the instability mechanisms, but also complements previous studies.
Extension to the weakly nonlinear regime is also discussed.

1. Introduction
The stability of interfacial flow is a subject of longstanding fundamental interest

in fluid dynamics and engineering applications. Since most interfacial flow systems
contain surface-active agents or surfactants, their roles in affecting the system stability
are often critical to processes. This article is devoted to understanding and clarifying
the stability mechanisms of surfactant-laden interfacial flow.

It is believed that the dominant effect of surfactant on the stability is due to
Marangoni forces that drive the fluid from low-surface-tension to high-surface-tension
regions. For stationary planar systems, surfactant effects are damping (Berg & Acrivos
1965) in analogy to thermocapillary stabilization (Pearson 1958). In the presence of
a base flow, Whitaker & Jones (1966, hereafter referred to as WJ) first examined the
effect of surfactant on the long-wave instability of a falling film flow. They showed
that surfactant could have a stabilizing effect such that the critical Reynolds number,
beyond which the system is stable, increased with surfactant elasticity. Pozrikidis
(2003) extended the analysis to arbitrary-wavelength disturbances and found that for
zero Reynolds numbers surfactant could make the system less stable compared to
the surfactant-free case. For two-fluid systems, Frenkel & Halpern (2002, hereafter
referred to as FH) studied the effect of surfactant on the long-wave instability of a two-
layer Couette flow in the limit of Stokes flow. They found that surfactant can induce
destabilization to a system that is inherently stable without surfactant. Extension to
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the case with arbitrary wavenumbers was made in their subsequent analysis (Halpern
& Frenkel 2003). In related work, Blyth & Pozrikidis (2004, hereafter referred to
as BP) developed a lubrication-flow model to examine both linear and nonlinear
stabilities for long-wavelength perturbations. In addition to verifying the features of
linear instability found by FH, they showed that the Marangoni instability could be
arrested by nonlinear effects under certain conditions. Wei (2005a) recently extended
the analysis of WJ by applying an additional shear stress on the interface. He found
that a stable clean-interface system could be destabilized by surfactant, depending on
the direction and strength of an applied surface shear.

All these early studies suggest that surfactant can influence the system stability
due to its interaction with base flows. The role of base flows in affecting the stability
of surfactant-laden systems lies in the interfacial tangential stress condition and the
surfactant transport equation. The first gives rise to a jump in the base shear stress
across the interface, providing a perturbation shear stress that can induce a flow.
The second is primarily due to surface convection that can rearrange the surfactant
distribution along the interface. The surface convection has two parts: one comes
from perturbations to the basic interfacial velocity, and the other is simply attributed
to the surface flow created by Marangoni forces. For falling film flow as in WJ, the
surface velocity is induced by the first mechanism and then re-distributes surfactant
through the second. The resulting Marangoni effect is stabilizing to the system. On
the other hand, for a two-fluid system as in FH, there is no contribution from the
first mechanism; most of the surfactant is rearranged by the perturbation of the basic
interfacial velocity. In contrast to a single-fluid falling flow, Marangoni effects could
cause destabilization in a two-fluid system.

As pointed out by FH, the main cause of a Marangoni destabilization is the inter-
facial shear of a base flow. However, for a falling film flow although its basic interfacial
shear is zero, a perturbation to it can have similar advective effects on the surfactant
rearrangement. But this does not lead the system to be unstable. The instability
mechanism given by FH only reflects a part of the story. As we shall demonstrate,
both falling film and two-fluid Couette flow systems produce very similar sets of
evolution equations governing the long-wave stability. Two-fluid systems involve
further complication due to viscosity stratification. Technically speaking, in all the
equations the surface velocities contain terms that are proportional to the deflection
of the interface. Since such a term can cause a stabilizing effect in one case but
the opposite in another, similar physical effects can lead to different outcomes. This
requires clarification, which is the main theme of this article.

In this work, we aim to offer a unified view to explain the situation above. To do
this, we revisit the long-wavelength stabilities of both vertically falling film flow and
two-fluid Couette flow systems in the presence of surfactants (see figure 1). Although
similar systems have been analysed previously by WJ, FH and BP, the formulations
of these studies were less tractable so that the interpretations had to rely on either
special-case illustrations (FH) or numerical observations (BP), and were thus less
obvious. The present ansatz will utilize the lubrication-flow formulation to derive a
set of linear evolution equations relevant for each case. As we shall show, the derived
sets of evolution equations appear to be in rather simple forms in comparison with
these previous studies. This enables us to more easily identify the underlying physics
and to expedite the interpretations based on the equations. The paper is organized as
follows. We first examine a single-layer falling film with surfactant in § 2. A two-fluid
Couette flow with surfactant is examined in § 3. In § 4 we briefly discuss the extension
to the weakly nonlinear regime. Concluding remarks are made in § 5.



Flow-induced Marangoni instability due to surfactant 175

Air

Liquid

Interface

Surfactant

g

y

x

d

1

Surfactant
Interface

Fluid 1 

Fluid 2 
y

x

1

η

η

(a)

(b)

Figure 1. Surfactant-laden flow systems. (a) One-fluid vertically falling film flow.
(b) Two-fluid Couette flow.

2. Vertically falling film flow with surfactant
2.1. Problem formulation

The purpose of this study is to identify the origin of the flow-induced instability
due solely to the presence of surfactant. To isolate Marangoni effects, henceforth we
consider a liquid layer flowing down a vertical plane, see figure 1(a). This allows us to
eliminate stabilizing effects due to hydrostatic pressures. We also restrict our attention
to a flow system with negligible inertia so that destabilizing effects due to inertia are
excluded in the problem. The liquid of density ρ∗ and viscosity µ∗ is covered by a
monolayer of insoluble surfactant. To non-dimensionalize the system, the unperturbed
depth of the liquid layer h∗ and the unperturbed interfacial velocity U ∗

0 = ρ∗g∗h∗/(2µ∗)
(with g∗ being the gravitational acceleration) are chosen as the characteristic length
and velocity scales, respectively. The pressure is scaled by µ∗U ∗

0 /h∗. Time has a scale
of h∗/U ∗

0 . The flow system is defined in Cartesian coordinates aligned with the plane:
x points down the slope, and y is the outward direction normal to the wall defined at
y = 0. Let u and v be the velocity components in the x- and y-directions, respectively,
and p be the pressure. The base flow is given by U = 2y − y2. For perturbations with
a small wavenumber k (�1), the governing equations are

ux + vy = 0, (1)

0 = −px + uyy. (2)
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Here the perturbation pressure p is a function only of x as a consequence of py = 0 in
the leading-order y-momentum equation. Let η and Γ denote the perturbations to the
interface and the uniform surfactant concentration, respectively. The latter is scaled
by the surfactant concentration Γ ∗

0 in the base state, and σ ∗
0 is the corresponding

surface tension. For the normal stress balance condition at the interface, p arising
from surface tension forces is ηxxCa−1 ∼ k2Ca−1 where Ca =µ∗U ∗

0 /σ ∗
0 is the capillary

number. If Ca � O(1), px ∼ k3/Ca in (2) is at most O(k3); thus the surface-tension-
driven flow can be negligible. This enables us to examine the effects arising only from
interactions between surfactant and the base flow. The tangential stress balance at
the interface gives

uy(y = 1) = −Uyy |y=1η − MΓx, (3)

where M = −Γ ∗
0 /σ ∗

0 (∂σ ∗/∂Γ ∗)Γ ∗
0
/Ca is the Marangoni number. Equation (3) suggests

that a Marangoni force can drive u at O(k). According to (2), px is O(k3), hence
so is the corresponding u. We therefore can neglect px in (2) for assessing only the
Marangoni-driven instability. As a result, applying u(y = 0) = 0 at the wall and (3)
yields the perturbation flow field:

u = (2η − MΓx)y, v =
(
−ηx + 1

2
MΓxx

)
y2. (4)

This flow field is then substituted into the kinematic condition v(y = 1) = ηt +
U (y =1)ηx and the surfactant transport equation Γt +U (y = 1)Γx +Uy |y=1ηx +(u(y =
1))x =0 at the unperturbed interface. The latter equation is applied for insoluble
surfactant with negligible surface diffusion. Also note that Uy |y=1 = 0. In a reference
frame moving with the basic interfacial velocity, i.e. x → x − U (y = 1)t , we arrive at
the following set of evolution equations that govern the long-wave stability of the
system:

ηt + ηx − 1
2
MΓxx = 0, (5)

Γt + 2ηx − MΓxx = 0. (6)

The effects of the base flow are reflected by the terms ηx and 2ηx in (5) and (6),
respectively. These terms are derived from the perturbation to the basic shear stress
Uyy |y=1η due to the interface deflection as indicated by (3). Applying normal modes

(η, Γ ) = (η̂, Γ̂ ) exp(ikx + st) to the above set of equations yields two linear growth
rates s = 0 and s = −(i)k + Mk2). The first mode has a zero growth rate, suggesting
that surfactant could make the system less stable. This mode seems to have been
overlooked previously until the recent study by Pozrikidis (2003). The second mode
corresponds to the result of WJ which is the correction to Yih’s clean-interface study
(Yih 1963).

2.2. Vorticity interpretation of instability mechanism

The mechanism of instability can be generally interpreted using eigenfunctions. In
contrast to the previous studies (FH, BP), a more appropriate interpretation based on
eigenfunctions would be given from the viewpoint of vorticity. This concept was first
proposed by Hinch (1984) to explain the shear-induced instability of two immiscible
fluids, and later applied to surfactant-free, falling film systems (Huang & Khomami
2001; Kelly et al. 1989). Charru & Hinch (2000) extended the idea and provided a
unified view for the instability of two-layer Couette flows. How vorticity determines
instability depends on its phase difference relative to the interface. Since this concept
appears to be quite general, it is worthwhile explaining how it works in more detail.
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Figure 2. Explanation of stability mechanism from the viewpoint of the vorticity–interface
phase difference. The leading-order vorticity is given by ω = −uy . ω+ and ω− denote the
maximum and the minimum vorticities, respectively. Consider the case when vorticity is ahead
of the interface deflection. For a control volume between a peak and the ω+ end of the
interface the flow induced at the peak is weaker than that at the ω+ end, giving rise to upward
motions of the peak. Similar reasoning leads the trough move downwards. As a result, the
interface deflection amplifies, leading to an unstable system.

We take a falling film flow as an example. Using (4), the leading-order perturbation
vorticity ω is given by

ω = −uy = −2η + MΓx. (7)

Thus ω remains uniform across the film. Stability/instability can be identified by
whether perturbation vorticity leads or lags behind the interface deflection. The
mechanism is illustrated by figure 2. Let θ denote the phase difference of perturbation
vorticity relative to the interface deflection. For θ > 0, the extremes of positive
(negative) vorticity are located at the surface points somewhat ahead of the interface
peaks (troughs). Now consider a control volume enclosing a peak and its adjacent
maximum-vorticity location. In this enclosed region, because the perturbation vorticity
is counterclockwise, it induces backward fluid motions. Since the vorticity at the peak
is weaker, the flow entering across the maximum-vorticity end is greater than that
leaving the peak end. The resulting net flow is thus positive, amplifying the interface
deflection at the peak. Similar reasoning also holds at the interface trough. Therefore,
θ > 0 (<0) leads the system to be unstable (stable). Alternatively, how vorticity induces
fluid motions that affect the interface dynamics can be seen directly from the kinematic
condition ηt = v(y = 1) = 1

2
ωx in connection with vorticity using (4) and (7). That

is, vorticity causes fluid motions normal to the unperturbed interface. In the normal-
mode form, we have

ω̂ = 2k−1(si − isr ) η̂, (8)

where sr and si denote the real and imaginary parts of the growth rate s, respectively.
Hence the vorticity–interface phase difference θ is given by

θ = sign(si)Arg(si − isr ), −π � θ � π. (9)

To identify whether vorticity leads (θ > 0) or lags behind (θ < 0), the interface should
be frame viewed in a reference of the propagating direction (via sign(si)) of the inter-
face. For a forward-propagating interface, si < 0, it follows that θ > 0 (<0) requires
sr > 0 (<0) for instability (stability) as illustrated earlier. If the interface travels back-
wards, i.e. si > 0, then instability (stability) occurs when θ < 0 (>0).

In the absence of surfactant (M = 0), although Kelly et al. (1989) have explained
this case, we will provide an alternative explanation, not only for completeness but also
for the later comparison with the surfactant case. ω is generated by the perturbation
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shear stress Uyy |y=1η due to the base flow. Positive (counterclockwise) vorticity arises
for η < 0 with its maximum at the interface troughs whereas negative (clockwise)
vorticity prevails for η > 0 with its extreme at the interface peaks. That is, ω is out of
phase with η. Since vorticity has no variation at the peaks or troughs, its induced fluid
motions do not produce any net flows across these points; the interface deflection
neither grows nor shrinks. The system therefore remains neutral.

When surfactant is present, since the Marangoni stress drives the fluid to move
backwards (forwards) for Γx > 0 (<0), it modifies vorticity in a counterclockwise
(clockwise) sense as indicated by (7). For the growth rate s = 0, the corresponding
eigenfunction yields Γ̂ = −2iη̂/Mk, suggesting that Γ leads η by π/2. As revealed by
(7), the vorticity created by the Marangoni effect lags behind Γ by π/2; this vorticity
is thus in phase with η, offsetting the out-of-phase vorticity created by the basic shear
stress. Because both in-phase and out-of-phase vorticities cancel out exactly, ω is zero.
Since a zero vorticity does not induce any fluid motions, the system simply remains
neutral. For the growth rate s = −(ik + Mk2), we find Γ̂ = 2η̂. The normal-mode
vorticity ω̂ = 2η̂(−1 + Mik) suggests that vorticity lags behind the interface, hence
giving rise to a stabilizing effect.

FH and BP proposed mechanisms based on Marangoni forces to explain instability
in two-fluid systems, but applying a similar mechanism as theirs to falling film
flow would be less clear. For example, the s = 0 eigenfunction suggests that the
Marangoni effect draws the fluid toward or away from the interface mid-points,
tending to an unstable interface growth. However, as we shall demonstrate later, how
this destabilizing action can make the system unstable depends on its competition
with instability reducing effects. Accounting only for this destabilizing effect without
including attenuating mechanisms as these studies did could lead to an inconsistent
interpretation.

While vorticity appears useful to explain stability/instability, the eigenfunctions
are determined a posteriori from the derived equations. Their features already reflect
interplay among a variety of factors involved; the origin of the eigenfunctions still
needs an explanation. In the next subsection we shall provide an alternative view
to the problem. The interpretation will be based on the evolution equation with the
aid of observations using the initial value problem approach. This furnishes a more
direct way to envisage how a base flow interacts with surfactant so as to determine
the system stability.

2.3. Initial value problem

The system is initially subjected to a sinusoidal perturbation of the interface. The
initial surfactant concentration remains uniform. To solve (5) and (6) numerically,
assuming η = A(t) cos(kx) + B(t) sin(kx) and Γ = C(t) cos(kx) + D(t) sin(kx), we can
reduce them to a set of ordinary differential equations with appropriate initial condi-
tions for unknown time-dependent coefficients A, B , C, and D. This set of equations
is then solved numerically using the Gear method.

Figure 3 shows the developments of both the interface and surfactant concentration.
According to (4), the perturbation to the interface yields a perturbed surface velocity
that is proportional to the deflection of the interface. This surface velocity (via 2ηx

of (6)) rearranges the surfactant distribution; it increases (decreases) the surfactant
concentration on the interface portions where ηx < 0 (>0). The resulting surfactant
concentration has maxima or minima at the interface mid-points, but no variation at
the interface crests or troughs. That is, the surfactant distribution has a phase of π/2
ahead of the interface. This is also equivalent to the s = 0 eigenfunction Γ̂ = −2iη̂/Mk.
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Figure 3. The spatio-temporal evolution of η and Γ for a falling film flow. M = 1, k =0.1.

Such a configuration lasts for short time (figure 3a). When the induced Marangoni
forces dominate the travelling term ηx in (5), they tend to increase (decrease) η on
the portions where ηx > 0 (<0). So the induced interface growth takes the form of a
backward-travelling wave. It is shown in figure 3(b) that η lags behind Γ slightly.
However, the base flow effect, via ηx of (5), causes the interface to travel forwards. This
forward-travelling wave can offset the above growth tendency due to the Marangoni
effects (figure 3c) because −ηx and Γxx are out of phase. In addition, the developing
Marangoni flow also tends to reduce the surfactant concentration gradient in view
of the diffusion nature of (6), opposing the concentration steepening due to ηx in
(5). When these reducing effects are stronger than the Marangoni-induced growth,
the interface deflection gradually fades away, as does the surfactant concentration
perturbation (figure 3d–f ).

The above observations also can be interpreted in conjunction with figure 4 for
the temporal behaviours of the amplitudes of η, Γ and ω. Let δ be the amplitude
of the initial perturbation to the interface. At the very early stages of the evolution
during which the amplitude of Γ is not large, (5) suggests ηt + ηx = O(k2); that
is, the interface travels slowly without a change in its amplitude during the time
scale t ∼ O(k−1). Meanwhile, since Γt + 2ηx = O(k2) from (6), such a slowly changing
interface leads the surfactant concentration to grow like Γ ∼ ηx(t = 0)t ∼ kδt and the
corresponding Marangoni effect to MΓxx ∼ k3Mδt within the time scale of O(k−1) (i.e.
kt � π in figure 4). When time is about to reach a scale of O(k−2M−1) (about kt ∼ 2π
in figure 4), the amplitude of Γ becomes sufficiently large and is of O(k−1M−1δ).
This order is also consistent with the s = 0 eigenfunction Γ̂ = −2iη̂/Mk. At this
stage, the Marangoni influences start to be comparable to the effects due to the ηx

terms.
At the later stages when t � O(k−2M−1), the gradient of Γ is reduced by strong

Marangoni diffusion (MΓxx of (6)), so the Γ amplitude decreases. The resulting
Marangoni flow becomes weaker, as does its tendency to stimulate the interface
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growth (through MΓxx/2 of (5)). Since this growth is not strong enough to compete
with the travelling-wave depletion to furnish the subsequent interfacial growth, the
interface amplitude decreases (or increases slightly for a short period of time). This
further weakens the subsequent Marangoni forces, reducing the tendency of interface
growth. Repeating the above process thus gradually damps the interface perturbations
in successive cycles. Damping is even more evident when observing the temporal
evolution of vorticity; the vorticity decays exponentially with time. This, via (7),
indicates that the vorticity created by the interface deflection is offset by that of
the Marangoni stress. Figure 5 shows the evolution of both Γ − η and ω − η phase
differences. These results are plotted in the range between −π and 2π to track their
changes with time in a continuous manner. Note that when the phase θ is larger than
π, it should be read as a phase lag of (2π − θ). The long-time Γ − η phase difference
approaches π/2, which is consistent with the s = 0 eigenfunction Γ̂ = −2iη̂/Mk. The
corresponding ω − η phase difference changes rapidly between 0 and 2π, indicating
that the vorticity has no preference regarding leading nor lagging behind the interface,
hence the system remains neutral.

Note that the above transitory growth prior to long-term decay has not been
addressed previously for falling film system. Since a similar dynamic transition was
also found by BP for two-fluid systems, we believe that similar competing mechanisms
should also appear in two-fluid systems as we shall demonstrate later.

2.4. Instability mechanisms

As demonstrated above, the key to stability is two competing mechanisms: (i) the
flow-induced steepening of the surfactant concentration and the Marangoni interface
growth, and (ii) the interface-travelling-wave depletion and the Marangoni relaxation
effect on the surfactant concentration. As such, the reason why the system (5) and
(6) is neutrally stable can be briefly explained as follows. An interface growth due
to the base-flow-induced Marangoni effect is offset by a travelling interface wave.
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The resulting interface becomes almost stationary and tends to steepen the surfactant
concentration. But this concentration steepening is again completely balanced by the
Marangoni diffusion.

In comparison with the evolution-equation-based argument above, the use of eigen-
functions cannot describe the interaction during the growth–decay transition period
at the early stages of the evolution. We have demonstrated that to understanding this
transition is important because it shows how competing effects determine the fate of
the system. In this regard, it is more appealing to use the evolution-equation-based
interpretation in concert with initial value problems for elucidating the underlying
physics.

A neutrally stable falling film with surfactant is a consequence of exactly balancing
actions between destabilizing effects and those that reduce them; an imbalance could
lead to an instability. To illustrate this, we first consider (5) with the following artificial
change of the travelling-wave term:

ηt + ληx − M

2
Γxx = 0, (10)

where λ is a measure of the wave speed. Inspecting the real part of the normal-mode
growth rate, we find that the system is unstable for λ< 1. Since the Marangoni-induced
growth is accompanied by a backward-travelling interfacial motion, a forward-
travelling wave with 0 < λ< 1 is not sufficiently fast to suppress that growth, thereby
making the destabilization still inevitable. λ = 0 also leads the system to be unstable
because there is no way to relax the interface growth. For λ< 0 the interface wave
travels backwards and works coherently with the Marangoni-induced growth, hence
reinforcing the destabilization.
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If an imbalance arises from the ηx term of the surface velocity in (6), a similar
reasoning could lead to instability. As in Wei (2005a), this scenario can occur when
the air–liquid interface is affected by an additional wind shear τs . This interfacial
shear τs can be in the direction of assisting (τs > 0) or opposing (τs < 0) gravity-driven
base flow. For such a system in a moving frame: x → x − (1 + τs)t , equation (5)
remains unchanged, and (6) now becomes

Γt + (τs + 2)ηx − MΓxx = 0. (11)

A normal-mode analysis reveals that an instability occurs when τs > 0 or τx < −2,
as shown by Wei (2005a). When τs > 0, it suggests that applying a minute interfacial
shear in favour of gravity-driven flow can initiate the Marangoni instability. This
is because the applied shear amplifies perturbations to the surfactant concentration,
which expedites the Marangoni interface growth. For τs < 0, on the other hand, if
the shear strength |τs | is weak, the imposed shear being against gravity could weaken
the ability to trigger the Marangoni interface growth. But if |τs | is sufficiently large,
i.e. |τs | > 2, the shear dominates the gravity force; it again suffices to activate the
Marangoni instability.

Alternatively, the effect of imposed shear on stability can be elucidated by the
concept of vorticity. For the first mode s = k2Mτs/2, Γ̂ = −(2i/(kM) + τs)η̂ and
ω̂ = −ikMτsη̂. Recall that in the earlier discussion about free falling flow the base-
flow-induced Marangoni flow creates in-phase vorticity with the interface deflection,
offsetting the out-of-phase vorticity created by perturbations to the basic shear stress.
Imposing an additional shear τs > 0 tends to make Γ out of phase with η. This
effect, through the Marangoni stress MΓx of (7), makes vorticity lead the interface
deflection by π/2, thereby leading to destabilization. A similar reasoning for τs < 0
leads vorticity to lag behind the interface, hence it is stabilizing.

The second mode s = −ik −k2M(τs +2)/2 has Γ̂ =(τs +2)η̂ and ω̂ =(−2+ikM(τs +
2))η̂. In the case of free falling flow (τs = 0), this mode is stabilizing as in WJ. The
reason is that the induced surfactant concentration (that leads the interface by π/2
for the first mode) is over-relaxed by the Marangoni diffusion. This tends to make Γ

in phase with η. This tendency is further reinforced by a Marangoni flow that acts
to decrease the interface deflection for such an in-phase configuration. The resulting
vorticity lags behind the interface deflection by π/2, thus making the system stabilized.
When imposing an additional shear on the interface, τs > 0 enhances the Marangoni
recoil, and the system thus remains stable. For τs < 0, if the applied shear is not strong
enough to oppose gravity, the system is expected to be stable as above. However, if
the applied shear is sufficiently strong against gravity, the corresponding Γ − η phase
configuration will be the reverse; that is, Γ will be out of phase with η, so that
vorticity will be ahead of the interface deflection, thereby destabilizing the system.

In the light of the respective effects of the ηx terms on the kinematic condition
(10) and surfactant transport (11) shown above, we now combine (10) and (11) (more
precisely, written in a fixed frame), and find that instability occurs when τs +2 > λ+ |λ|
or τs + 2 < λ − |λ|, which is equivalent to the following instability threshold:

sign(τs + 2)
(

1
2
(τs + 2) − λ

)
> 0. (12)

This instability condition suggests that the instability depends on the combination
of two factors: (τs + 2) and (τs + 2)/2 − λ. The first, (τs + 2), comes from the surface
convection ηx term of (11) due to the base flow, and is necessary for instability as
suggested by (12). If τs + 2 vanishes, the base flow has no influence on rearranging
the surfactant distribution; any concentration variation is simply smoothed out by
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the Marangoni diffusion, thus no instability occurs. The second, (τs + 2)/2 − λ, can
be recognized as the difference between cross-products of the coefficients of the ηx

and Γxx terms in (10) and (11). More precisely, if the base flow is capable of re-
distributing surfactant, i.e. τs + 2 �= 0, the onset of instability is determined by whether
the flow-induced Marangoni interface growth is stronger than the reducing effects that
combine interface-wave travelling and the Marangoni diffusion. In terms of strengths
of these effects, the condition of instability requires that the coefficient product of ηx

in (11) and Γxx in (10), (τs + 2)1
2
M , is greater than that of ηx in (10) and Γxx in (11),

λM . Applying (12) with τs = 0 and λ=1 (cf. (5) and (6)), we find that the left-hand
side of (12) is zero, thereby verifying that there is no occurrence of instability, in line
with the observations of the initial value problem shown earlier. As such, a criterion
for inception of the surface-shear-mediated Marangoni destabilization can be now
established.

3. Two-layer Couette flow with surfactant
3.1. Problem formulation

The above section focuses on single-layer flow systems. We now extend the ideas to
two-fluid Couette flow systems. Consider two immiscible liquid layers flowing in a
channel while undergoing a shear action exerted by two parallel plates, see figure
1(b). The bottom layer is occupied by fluid 1 of viscosity µ∗

1 and thickness d∗
1 . It

is overlaid by the second fluid of viscosity µ∗
2 and thickness d∗

2 . Densities of both
fluids are matched and denoted by ρ∗. The fluid–fluid interface contains insoluble
surfactant. As in the previous section, we again assume that both gravity and inertial
effects are neglected in the problem. As in FH, it is more convenient to analyse the
system in a frame moving with the steady-state interfacial velocity. With respect to
the interface, the bottom plate moves with a speed of U ∗

w , and the top with speed
(d∗

2/d
∗
1 ) µ∗

1U
∗
w/µ∗

2 in the opposite direction. The characteristic length and velocity are
chosen as d∗

1 and U ∗
w , respectively. The scale of the pressure is µ∗

1U
∗
w/d∗

1 and time is
scaled by d∗

1/U ∗
w . Flow quantities are defined in a way similar to the previous section,

as are the interfacial properties. In the dimensionless form, defining the viscosity ratio
m=µ∗

2/µ∗
1 and the depth ratio d = d∗

2/d∗
1 (� 1), the base flows are given by U1 = y

for −1 � y � 0, and U2 = y/m for 0 � y � d . For long-wavelength perturbations, the
governing equations for each fluid are still (1) and (2). The perturbation flow system
is subject to the following boundary conditions. The no-slip walls require

u1 = v1 = 0 at y = −1, u2 = v2 = 0 at y = d. (13)

The continuity of velocities across the interface demands

u1 = u2 +

(
1

m
− 1

)
η at y = 0, (14)

v1 = v2 = 0 at y = 0. (15)

The tangential stress condition at the interface is

mu2y − u1y = MΓx at y = 0. (16)

The normal stress condition at the interface reduces to

p1 = p2 at y = 0. (17)
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We again neglect surface-tension stabilizing effects in (17) provided the capillary
number Ca =µ∗

1U
∗
w/σ ∗

0 � O(k2). Since py = 0 from the y-momentum equation,
p = p(x), hence p1 = p2 = p(x) in view of (17). Solving (2) for u of each fluid yields

u1 = 1
2
px(y

2 − 1) + A1(y + 1), u2 =
1

2m
px(y

2 − d2) + A2(y − d), (18)

which satisfy (13). Then v can be obtained by continuity accordingly. A1 and A2 are
undetermined coefficients that depend on η and Γ . Applying the remaining boundary
conditions, these coefficients together with px can be obtained as follows:

px = αη + βMΓx, A1 = α1η + β1MΓx, A2 = m−1(α1η + (β1 + 1)MΓx), (19)

where α, β, α1, and β1 are auxiliary coefficients:

α = 6(1 − m)(m − d2)/�, β = −6 md(1 + d)/�,

α1 =
4

�
(1 − m)(m + d3), β1 = − 1

�
((3d2 + 4d)m + d4),

� = m2 + (4d3 + 6d2 + 4d) m + d4.

As shown above, α and α1 reflect viscosity stratification effects; β and β1 are associated
with Marangoni effects. The resulting kinematic and surfactant transport equations
become

ηt + α̂1ηx − β̂1MΓxx = 0, (20)

Γt + α̂2ηx − β̂2MΓxx = 0, (21)

where the coefficients are given by

α̂1 =
α1

2
− α

3
=

2

�
(1 − m)(d3 + d2), β̂1 =

β

3
− β1

2
=

d2

2�
(d2 − m),

α̂2 = 1 + α1−α

2
=

1

�
(d + 1)((3d + 1) m + d3 + 3d2), β̂2 =

β

2
− β1 =

d

�
(m + d3).

The above results are equivalent to those obtained by FH. In comparison with FH,
however, (20) and (21) are more advantageous for identifying the mechanisms of
instability; the insights gained from them can complement the study of FH. Note
that the Marangoni parts β̂1 and β̂2 do not involve contributions from the base flow.
Further note that the signs of α̂1 and β̂2 depend on 1 − m and d2 − m, respectively,
and that both α̂2 and β̂2 are positive numbers. In comparison with (5) and (6) for
falling film flow, these equations have very similar forms at first glance. Although
both falling film and two-layer systems have different base flows, they seem to have
similar effects on the stability. However, as we have discussed in the foregoing section,
the key to instability lies in the detailed way that a base flow rearranges the surfactant
distribution and affects the interfacial dynamics. Below we demonstrate the features
of (20) and (21).

3.2. The case of m = 1

We first consider a special case in which viscosities of both fluids are matched (m = 1).
In this case α̂1 = 0, equations (20) and (21) are reduced to

ηt − β̂1MΓxx = 0, (22)

Γt + ηx − β̂2MΓxx = 0. (23)

Here β̂1 > 0. Equation (22) does not have the travelling-wave term ηx due to the
absence of viscosity stratification while (23) still preserves the ηx term derived from
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the basic shear flow. The instability threshold of (22) and (23) is identified to be
β̂1 > 0. Since this condition is automatically satisfied, the system is always unstable
due to surfactant. This can be also seen by the normal-mode growth rates:

s = ±1 + i

2
k3/2M1/2

(
d2(d − 1)

(d + 1)3

)1/2

(24)

in which the positive mode is always unstable. Equation (24) agrees with FH. These
growth rates vary with k3/2M1/2. They can be obtained by retaining only the leading-
order terms in each equation, i.e. by neglecting the Marangoni diffusion term β̂2MΓxx

in (23). Physically, as we shall also show later for an initial value problem, since
the Marangoni-induced interface growth is reduced neither by the travelling-wave
depletion nor by the Marangoni diffusion, the interface deflection amplifies without
being restored, leading the system to be unstable. Wei & Rumschitzki (2005) and Wei
(2005b) asymptotically examined the stability of surfactant-laden core–annular film
flows. In their studies, for weak interfacial tensions, similar sets of evolution equations
and growth rates were also found in the absence of viscosity stratification. This is
expected because for weak tensions the capillary effect due to the cylindrical interface
does not contribute to the instability; the problem is identical to that in a planar
system.

Note that the O(k3/2) growth rates found in (24) cannot be simply obtained by using
the standard Yih expansion technique unless one can identify the appropriate expan-
sion in k. In fact, the scale of the growth rates can be identified using the following
scaling argument. Letting the time scale be T , (22) and (23) suggest η/T ∼ k2MΓ and
Γ/T ∼ kη, respectively. These scalings yield T ∼ k−3/2M−1/2 and Γ ∼ k−1/2M−1/2η. The
inverse of the former just gives the growth rate scale shown above. The latter implies
that the perturbation to the surfactant concentration is large compared to that to the
interface.

We now employ the vorticity argument to illustrate the instability for the m = 1
system (cf. (22) and (23)). There are some aspects worth addressing concerning
differences between two-layer and free-surface flows. As discussed in the preceding
section, the vorticity generated in free-surface flow can be directly related to the
velocity normal to the unperturbed interface. This is the vorticity causing the interface
to grow or decay. It is based on the fact that perturbation flow is linear (cf. (4)) and
vorticity remains uniform across the layer (cf. (7)). However, for a two-layer flow in
a channel, as pointed out by Charru & Hinch (2000), perturbation flows need to
fulfil the requirement of no net flow across the channel (mass conservation); linear
perturbation flows as in a single-layer system generally do not satisfy that condition.
This requires the development of pressure perturbations. Hence, vorticity has to be
mediated by pressure as indicated by (18). More precisely, due to mass conservation,
the vorticities of both fluids at the interface can be related to the pressure gradient,
which is shown as follows. Define the perturbation flow rate in the x-direction for
each layer:

Q1 =

∫ 0

−1

u1 dy and Q2 =

∫ d

0

u2 dy.

With the aid of Ai = −ω(y = 0) (i = 1, 2) in (18), these flow rates can be written as

Q1 = −px

3
− 1

2
ω1(y = 0) and Q2 = − px

3m
d3 − d2

2
ω2(y = 0).
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Mass conservation demands Q1 + Q2 = 0, thus leading to

1

2
(ω2d

2 − ω1)y=0 =
1

3
px

(
1 +

d3

m

)
.

Replacing px in terms of the two vorticities, the flow rate of the bottom layer can be
expressed in the form

Q1 =
−md2

2(m + d3)

(
d

m
ω1 + ω2

)
y=0

, (25)

which determines the growth rates through the kinematic condition Q1x + ηt = 0.
Since (−mω2 + ω1)y=0 = MΓx in view of (16), ω1(y = 0) and ω2(y = 0) are generally
not in phase when surfactant is present. Hence the stability/instability depends on
competition between vorticities of layers. Equation (25) suggests that the larger d , the
more dominant the bottom-layer vorticity becomes since large d weakens the top-
layer flow. On the other hand, large m makes the top-layer vorticity more dominant
because the interface sees the more viscous top layer as a rigid wall that serves a
source of generating vorticity.

For m =1, inspecting (18) and (19) reveals that α = α1 = 0, so perturbation
vorticity is generated only by Marangoni stresses without being regulated by the
interface deflection. At the interface, the vorticity of each fluid is

ω1(y = 0) = −β1MΓx(β1 < 0) and ω2(y = 0) = −β2MΓx(β2 = β1 + 1 > 0).

When d > 1, since the magnitude of dω1(y = 0) is larger than that of ω2(y = 0),
the bottom-layer vorticity dominates the dynamics. Inspecting the eigenfunctions, we
find Γ̂ = ∓ (1 + i) (d2(d − 1)(d + 1)−3)−1/2k−1/2M−1/2η̂ corresponding to the positive
and negative modes of (24), respectively. The associated normal-mode vorticity of
the bottom layer is ω̂1 = ±(1 − i)(d2(d − 1)(d + 1)−3)−1/2|β1|k1/2M1/2η̂. Note that
in (24) for d > 1 the positive (negative) mode has si > 0 (<0), indicating backward
(forward) propagation of the interface. For the positive mode, since Γ lags behind η

by 3π/4, the induced vorticity lags behind the interface by π/4 and in turn gives rise
to destabilization. A similar reasoning for the negative mode leads to stabilization.

Like our explanation above, FH applied the phase difference between Γ and η

to illustrate stability/instability by considering the m = 1 case with a much thicker
upper layer (d � 1). Since the Γ −η phase difference for the positive (negative) mode
is 5π/4 (π/4), it can be viewed as being close to out of phase (in phase), leading to
an unstable (a stable) result as a consequence of the actions of Marangoni forces on
the deflected interface. The m = 1 system lacks reducing effects at leading order in
k; the Marangoni force is thus the sole effect responsible for the system stability. As
indicated by (20) and (21), for m �= 1 since reducing effects are generally involved, Γ

and η are neither close to out of phase nor in phase. Applying only the Marangoni
argument cannot explain general features of stability. As we shall discuss later for
m �=1, the stability features can be better explained by the vorticity-based argument.
In fact, appropriate interpretations using the Γ −η phase difference should be based
on evolution equations with the aid of initial-value-problem observations.

We now conduct an initial value simulation of (22) and (23) to examine the associa-
ted instability mechanisms. Given an initial sinusoidal perturbation of the interface,
figure 6 shows the spatio-temporal evolutions for both η and Γ . In the early stages
of the evolution, the surfactant perturbation grows very rapidly while the interface
virtually remains still. The stillness of the interface is attributed to the lack of
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Figure 6. The spatio-temporal evolution of η and Γ for a two-fluid Couette flow. m= 1,
d = 2,M = 1. k = 0.1. In (e) and (f ), the scale for Γ is shown on the right vertical axes. Arrows
are used for referring to the axes, and do not indicate motions.

the travelling term ηx in (22). With such an interface the surfactant concentration
perturbation amplifies linearly with time (figure 6b–d) according to Γ ∼ −ηx(t = 0)t
(cf. Γt +ηx =0, equation (23) with negligible Marangoni term). We also verify that the
early-stage (t < 30) evolutions of Γ do not depend on d , confirming that the initial
amplification of Γ is solely derived from the base-flow-induced surface velocity.
Compared to figure 3, we find that the early-time growth of Γ is relatively slower
than that of falling film flow. This is because the coefficient of the base-flow term ηx

of (23) is half of that of (6) of falling film flow. These early-stage evolutions suggest
that although the types of base flows are different, they produce the same effects of
amplifying the surfactant concentration variations. Even though a falling film flow
has a faster early growth in Γ than a two-layer m =1 Couette flow, whether such
a growth can persist so as to determine the fate of a system lies in the reducing
effects. A falling film flow has reducing effects that can make the growth decay at
later times while a two-layer m = 1 Couette flow does not. This key difference cannot
be identified by the eigenfunction analysis; rather, the initial value approach can
provide more insight into all occurrences at different time scales in the course of the
evolution.

In the later stages of the evolution (figure 6e, f ), the surfactant perturbation grows
very rapidly compared to the interface. The instability is mainly attributed to the lack
of the ηx term in (22) in providing travelling-wave suppression upon the flow-induced
Marangoni interface growth. In addition, since MΓxx is a higher order effect than ηx

in (23), the surfactant concentration perturbation can be further magnified by the
growing interface without being recoiled by the Marangoni diffusion, which exag-
gerates the destabilizing effect on the system. Figure 7 shows the temporal evolution
of the amplitudes of η, Γ and ω1. The vorticity ω here is chosen as the bottom-layer
one ω1 since it dominates the dynamics for d > 1 and m=1. Initial growth (for
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Figure 7. The temporal evolution of the amplitudes of η, Γ and ω1 corresponding
to figure 6.

kt/2π < 2.5) of both Γ and ω1 is much faster than that of η. Long-term behaviours of
η and Γ qualitatively confirm Γ ∼ k−1/2Mη shown earlier using a scaling argument.
In addition, in comparison with figure 4 for falling film flow, the amplitudes grow
monotonically with time without oscillation. This is because oscillation is an indication
of the participation of reducing effects arising from travelling waves, and travelling
waves are absent for m = 1 here.

Figure 8 shows the evolution of Γ −η and ω1 −η phase differences. Initially, similar
to the falling film case, Γ has a phase difference of −π/2 with η owing to the
base-flow-excited surfactant perturbation (cf. Γt = −ηx). The developed Marangoni
stress retards η, enlarging the phase difference with Γ . The long-time Γ −η phase
difference approaches −3π/4, which is consistent with the eigenfunction result. Since
ω1 is directly related to the Marangoni stress MΓx , it shifts the Γ −η phase by π/2
and makes ω1 lag behind η by π/4, thereby leading the system to instability

3.3. The case of m �= 1

When there is viscosity stratification (m �= 1), in contrast to m =1, it activates the
travelling-wave term α̂1ηx in (20). Since α̂1 is proportional to 1 − m, the interface
travel forwards (backwards) for m < 1 (>1). Because the interface evolution also can
be determined by the Marangoni term β̂1MΓxx in (20), it is important to know how
Marangoni forces act, depending on the sign of β̂1, i.e. (d2 − m). When a Marangoni
stress is exerted on the fluid–fluid interface, its drag is more effective for a more
viscous fluid. When one fluid flows in one direction, the other flows oppositely as
a consequence of mass conservation. Since the interface response depends on the
contrast in velocities between two fluids, this is further affected by the depth of each
fluid. If the top layer has a sufficiently large depth, its motion is slow; the response of
the interface to Marangoni forces is mainly controlled by the bottom-layer motions.
But the response can be reversed when the top fluid has a sufficiently high viscosity.
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This also can be verified by the following argument. The Marangoni-induced linear
velocity profiles require u1 ∼ u2d to fulfil the zero-net-flow constraint. The tangential
stress at the interface (16) requires σx = u1y − mu2y ∼ (d2 − m)u1/d . This explains why
the competing effects of viscosity and depth on the Marangoni actions are reflected
by (d2 −m) in β̂1. A similar argument was given previously by Charru & Hinch (2000)
for a clean-interface two-layer system.

Equation (20) reveals that for d2 > m (d2 < m) the interfacial response to Marangoni
flows is reflected by the bottom (top) fluid motion. It follows that a perturbation to
the surfactant concentration tends to cause the induced interfacial displacement to
be out of phase (in phase) with it. It also implies that if instability occurs in the
system, increasing the top-layer viscosity can eventually suppress the instability and
stabilize the system. Such a Marangoni effect associated with viscosity stratification
was previously found by FH, and also identified numerically by BP. We provide an
explanation here. Therefore for a given depth d , there is a critical viscosity ratio m at
which the above-mentioned effects of viscosity and depth cancel out exactly. In this
situation (β̂1 = 0) Marangoni flows have no impacts on the interfacial evolution; the
interface just continues to travel without any change in its amplitude, therefore no
instability occurs. The same critical condition found by FH for the onset of instability
can be now explained.

In short, viscosity stratification can influence the interfacial dynamics so that it can
alter the outcome of the system stability. As indicated by (20), the effects of viscosity
stratification are twofold. On the one hand, it either affects the speed of an interfacial
wave or changes the wave propagating direction; on the other hand, it modifies
how the interfacial material responds to Marangoni forces. According to (21), since
an interfacial perturbation also can affect the surfactant concentration through the
surface advection along the interface, how the induced Marangoni flow acts with
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respect to the prevailing travelling motion of the interface through (20) determines
the subsequent interfacial development, and hence the stability. Below we illuminate
all occurrences for m �= 1 in more detail.

For m �= 1, we first inspect the normal-mode growth rates of (20) and (21), and
then discuss the associated instability mechanisms. These growth rates are given by

s =
(1 − d)

4(m − 1)
Mk2, (26)

s =
2i(m − 1)(d3 + d2)

�
k +

(d2 − m)((3d + 1)m + d3 + d2)

4(m − 1)�
Mk2, (27)

which agree with FH. Similar growth rate expressions for surfactant-laden core–
annular flows were also found in the low-tension limit (Wei 2005b). For d � 1, when
m < 1, the first mode is unstable while the second is stable. When m > 1, the first
mode becomes stabilizing; the system can be destabilized by the second mode if
d2 > m. Thus, instability occurs when d2 >m as in FH, verifying the earlier discussion
about the instability criteria based on Marangoni actions. This also suggests that the
parameters α̂1 (containing 1 − m) and β̂1 (containing d2 − m) in (20) play key roles in
determining the onset of instability.

We now apply vorticity arguments to illustrate stability/instability for m �= 1. The

eigenfunction is given by Γ̂ = −(s + iα̂1k)β̂−1
1 k−2M−1η̂ from (20). The normal-mode

vorticity at the interface for each fluid is ω̂1(y = 0) = −α1η̂ − iβ1kMΓ̂ and ω̂2(y = 0) =
m−1(−α1η̂ − i(β1 + 1)kMΓ̂ ). As revealed by (25), since instability depends on both
dω̂1(y = 0)/m and ω̂2(y = 0), their competition determines the instability. To illustrate
how these vorticities determine the system’s stability, below we consider two limiting
cases: (i) the large-gap limit d � 1 with moderate viscosity contrast m = O(1), and (ii)
the large-m limit with d = O(1).

In the large-gap limit d � 1, |α/α1| � 1 and |β/β1| � 1; the flow adjusted by altered
pressure can be considered to be relatively weak compared to linear flows in view of
(19). In this case, α̂1 ∼ α1/2 ∼ 2(1 − m)/d and β̂1 ∼ β1/2 ∼ 1/2, hence Γ̂ ∼ −(2s +
iα1k)β−1

1 k−2M−1η̂. This leads to ω̂1(y = 0) ∼ −2ik−1sη̂ and ω̂2(y =0) ∼ O(d−1), suggest-
ing that the bottom layer dominates the dynamics. This is expected since the top layer
has much weaker flow than the bottom one when d is large. For m > 1, the first mode
s ∼ −dMk2/4(m−1) makes the bottom-layer vorticity lag behind the interface by π/2,
and thus is stabilizing. The second mode s ∼ Mk2/4(m − 1) just does the opposite.
Similarly, m < 1 reverses the above trends.

For the case of m � 1 with d = O(1), α̂1 ∼ −2(d3 + d2)/m, β̂1 ∼ −d2/(2m), α1 ∼ −4
and β1 ∼ −(3d2 + 4d)/m. We have

Γ̂ ∼ 2md−2(s − 2i(d3 + d2)m−1k)k−2M−1η̂, ω̂1(y = 0)

∼ m−1(4mη̂ + i(3d2 + 4d)kMΓ̂ ) and ω̂2(y = 0) ∼ m−1(4η̂ − ikMΓ̂ ).

In this limit, the first mode s ∼ (1 − d)Mk2m−1/4 yields

ω̂1(y = 0) ∼ (4 + 4(d + 1)(3d2 + 4d)m−1)η̂ and ω̂2(y = 0) ∼ (4 − 4(d + 1))m−1η̂.

Since vorticity is either in phase or out of phase with the interface, no instability
occurs. Similarly, the second mode s ∼ 2im−1(d3 + d2)k − (3d + 1)m−1Mk2/4 does not
lead to instability since both vorticities are in phase with the interface in view of

ω̂1(y = 0) ∼ (4 + O(m−1k))η̂ and ω̂2(y = 0) ∼ (4 + O(k))m−1η̂.
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Physically, for m � 1 the bottom layer sees the interface as a rigid surface; this tends
to damp perturbations, hence leading to a stable system.

As shown above, when both d and m are large, the first mode is stabilizing, but
the second mode can be either destabilizing or stabilizing because of (d2 − m) in
(27). To understand the competition between large d and m effects from the vorticity
viewpoint, we let m = m̃d2 with d � 1 and m̃ = O(1). The second mode becomes

s ∼ ik/2 + (1 − m̃)(3m̃ + 1)m̃−2d−2Mk2/16.

The vorticities are

ω̂1(y = 0) ∼ (1 − ikMm̃−2d−2(3m̃ + 1)2/8)η̂ and

ω̂2(y = 0) ∼ m̃−1d−2(1 + ikMm̃−1d−1(3m̃ + 1)/2)η̂.

Noticing that si > 0 here, the bottom-layer vorticity lags behind the interface and is
destabilizing while the top-layer vorticity is stabilizing. Since (25) reveals that

Ω̂ ≡ (dω̂1/m + ω̂2)y=0 ∼ (m̃−1(d−1 + d−2) − 3ik−1m̃−3d−3(3m̃ + 1)(m̃ − 1)/8)η̂,

instability thus occurs when m̃< 1 or m<d2. For large d and d2 >m the instability
can be understood by the fact that the destabilization due to the bottom layer becomes
more dominant than the stabilization due to the top layer. The dominance of the
bottom layer here can also be identified by the earlier scaling argument using both
mass conservation and the tangential stress condition.

In fact, the instability threshold m = d2 can be obtained through the vorticity
argument as follows. One can show that

Ω̂ = (d3 + m)m−1�−1[4(d + 1)(m − 1)η̂ − ik(m − d2)MΓ̂ ].

It thus becomes clear that m = d2 makes Ω in phase or out of phase with η, and does
not lead to any instability. Instability demands the phase difference between Γ̂ and η̂

to differ from π/2; the Ω − η phase difference and hence instability are determined
by the sign and magnitude of (m − d2). For the second mode (27), we find

Ω̂ = (d3+m)m−1�−1[4(d+1)(m−1)+ikM(m−d2)((3d−1+d−2)m+d+1)(m−1)−1/2]η̂.

Therefore for m > 1 it becomes evident that the occurrence of instability requires
m < d2 by setting the overall vorticity to lag behind the interface in view of si > 0.

An alternative way to find the instability threshold of (20) and (21) is to follow a
similar procedure for arriving at (9) for a falling film flow. We find

sign(α̂2β̂1)(α̂2β̂1 − α̂1β̂2) > 0. (28)

As a result, the onset of instability depends on both α̂2β̂1 and α̂2β̂1 − α̂1β̂2. α̂2β̂1

indicates that the base-flow-induced Marangoni effect is necessary for the instability.
Its sign, determined by β̂1 (via d2 − m), reflects the way the fluids respond to the
Marangoni flow. α̂2β̂1 − α̂1β̂2 results from the competition between Marangoni-
triggered interface growth and reducing effects combining the interface travelling and
the Marangoni diffusion. Notice that the reducing effects have to be accommodated in
the viscosity stratification (reflected by α̂1). For α̂1 �= 0 (i.e. m �= 1), since α̂2β̂1 − α̂1β̂2 =
(d − 1)(d3 + d2)/(2�)> 0 for d > 1, the instability threshold is β̂1 > 0 or d2 >m as
in FH. For d = 1, α̂2β̂1 − α̂1β̂2 = 0 does not lead to any instability, which is clear
because of the reversibility of Stokes flow. When α̂1 = 0 (i.e. m = 1), however, no
reducing effects mitigate the Marangoni-induced interface growth; the condition (28)
is automatically satisfied as long as d �= 1. In this case, instability can persist as shown
by (24).
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The condition (28) is established provided that surface diffusion is negligible. Surface
diffusion clearly enhances reducing effects on the instability. In this case, condition
(28) is modified by replacing β̂2 with β̂2 + (PesM)−1 where Pes = U ∗

wd∗
1/D

∗
s is the

surface Péclet number with D∗
s being the surface diffusivity. That is,

sign(α̂2β̂1)(α̂2β̂1 − α̂1β̂2) > sign(α̂2β̂1)α̂1(MPes)
−1. (29)

In comparison with condition (28), condition (29) depends on MPes when surface
diffusion is present. Note that MPes does not depend on velocity, but on surfactant
and fluid properties. It is clear that the onset of instability has to overcome additional
reducing effects due to surface diffusion. Since α̂1 is positively proportional to (1−m),
for m > 1 the instability threshold d2 >m still holds regardless of the presence of
surface diffusion. On the other hand, m < 1 requires a relatively thick top layer
d > 4(1 − m)(MPes)

−1 + 1 to trigger instability.
To aid in understanding the features of stability for m �= 1, we again inspect the

spatio-temporal evolution of (20) and (21). We first consider the case of m < 1. In
this case, d2 >m, so the Marangoni flow is mainly reacted by the bottom layer. The
interface travels forwards with an O(k) wave speed in view of α̂1ηx (with α̂1 > 0). The
perturbed interface activates the surfactant concentration variation according to (21).
This leads to the induced surfactant concentration having a phase of π/2 ahead of
the interface. At the earlier stages of the evolution, a slow change in the interfacial
motion amplifies the surfactant concentration perturbation very rapidly. The induced
Marangoni flow, to which the bottom-fluid motion responds, tends to cause an
increase (a decrease) in the interface amplitude for the interface portions where ηx < 0
(> 0). This is the Marangoni effect that tends to induce the interface growth. Since the
Marangoni growth is in the direction opposite to that in which the interface travels
(i.e. α̂1ηx and −β̂1Γxx are out of phase), the interface growth slows down, as does the
steepening process of the surfactant concentration. For m = 0.5 and d = 2, figure 9
shows the temporal evolution of the amplitudes of η, Γ and ωi (i = 1, 2). As revealed
in figure 9, the early-stage (kt/2π < 3) interface amplitude decreases slowly with time,
indicating that the interface-wave depletion due to α̂1ηx is slightly stronger than the
Marangoni growth due to −β̂1MΓxx . Meanwhile, while the surfactant concentration
continues to be steepened by the slowly changing interface, the developed Marangoni
diffusion is not sufficiently strong to reduce the growing surfactant concentration
gradient. As a result, this steepening surfactant concentration accelerates the
Marangoni growth; the interface amplitude then starts to increase with time, leading
the system to become unstable for long time. For most of time, the top-layer vorticity
contribution is greater than the bottom-layer one, thus the top layer dictates the
dynamics. This explains why ω2 almost follows the trend of η while ω1 does not.

The above results for m < 1 combine some features from a falling film (figure 4) and
those from the m = 1 case (figure 7). The early-time, transitory modulation between
reducing effects and the Marangoni growth (kt/2π < 5) are similar to figure 4 for
falling film flow while the long-time behaviours resemble figure 7 for the m =1 case.
Figure 10 shows the evolution of phase differences Γ − η, ω1 − η and ω2 − η. The Γ − η

phase difference decreases with time initially and is then followed by a transitory
modulation due to reducing effects. Its long-time value reaches 0.55π which is
consistent with the leading-order eigenfunction Γ̂ ∼ −iα̂1β̂

−1
1 k−1M−1η̂ corresponding

to the first-mode growth rate (O(k2)) of (26). The phase differences ω1 − η and ω2 − η

behave differently. The former decreases with time initially and has a negative steady
value (∼ −0.17π indicating stabilization) while the latter increases initially and its
steady value is positive (∼0.97π indicating destabilization). Note again that θ > π
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Figure 9. The temporal evolution of the amplitudes of η, Γ and ωi (i = 1, 2) for a
two-fluid Couette flow with m< 1. m= 0.5, d =2, M = 1, k = 0.1.
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Figure 10. The temporal evolution of the phase differences Γ − η and ωi − η corresponding
to figure 9. Note that a phase θ larger than π should be read as a phase lag of (2π − θ ).

should be read as a phase lag of (2π − θ). Since ω2 dominates the dynamics in view of
its larger magnitude than dω1/m shown in figure 9, destabilizing effects due to ω2 are
more important than stabilizing effects due to ω1. This explains why the Γ − η phase
difference responds closely to the change in the ω2 − η phase difference. Also, because
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of the smaller magnitude of dω1/m, the ω1 − η phase difference takes a longer time
than the ω2 − η one to reach its steady value.

For m > 1, in contrast to m < 1, α̂1ηx makes the interface travel backwards. In this
situation, two cases d2 >m and d2 < m are considered separately. For d2 >m, the
results for d = 2 with several m are shown in figure 11. As shown in figure 11, the value
of dω1/m is larger than that of ω2, so that the bottom layer controls the dynamics.
Further inspection of the ω − η phase differences (not shown) reveals that ω1

lags behind η while ω2 leads η. Since ω1 has destabilizing effects in view of a
backward-travelling interface, the system eventually becomes unstable. These results
are also consistent with the features due to the second mode of (27). In comparison
with the m < 1 evolution shown in figure 9, the interface amplitude increases mono-
tonically with time. This is because α̂1ηx and −β̂1Γxx are in phase unlike the m < 1
case; the backward-travelling interface tends to encourage the Marangoni-induced
interface growth although the growth rates are smaller than the m < 1 case. Figures 7
and 11 reveal that for d2 >m the larger m, the longer the transition period. This can
be understood by the fact that the more viscous the top layer is, the smaller β̂1 in
(20), weakening the Marangoni growth and hence making reducing effects last longer.

For d2 <m, however, the flow response to Marangoni effects is switched to the top
fluid layer. The Marangoni flow acts in an opposite manner to that of the d2 > m case.
That is, it tends to thin (thicken) the bottom layer at the location where the surfactant
concentration is lower (higher). The resulting flow-induced Marangoni effect causes an
increase (a decrease) in the interface amplitude for the interface portions where ηx > 0
(<0), making the interface grow in a forward direction. This growth is relieved by the
backward-travelling motion of the interface. Typical amplitude evolution is shown in
figure 12. Results show that the bottom layer controls the dynamics because of its
greater vorticity contribution than the top layer. We have identified that the evolution
is dominated by the first mode whose growth rate is purely real and that ω1 is shown to
lag behind η; the system is thus stable as revealed in figure 12. In contrast to the d2 >m

case, stabilizing effects combining the interface-wave travelling and the Marangoni
diffusion now become stronger than the flow-induced Marangoni destabilization.
These competing effects dominate alternately in the course of the evolution, but are
overall in favour of stabilization in view of the instability criterion (28). Therefore,
the flow-induced surfactant concentration perturbation gradually fades away in a
time-oscillatory manner, as does the interface amplitude. The evolution is similar to
that of the falling film flow system shown in figure 4. A transitory behaviour found
by BP also can be explained in a way similar to the above.

4. Extension to the weakly nonlinear regime
In the light of the linear stability analysed so far, we would like to briefly discuss its

extension to the weakly nonlinear regime. Here we choose two-layer Couette flow for
the case study since it contains all the physical elements determining the stability, as
discussed in § 3. The relevant set of weakly nonlinear evolution equations is derived
below. We start with the flow rate of each layer by retaining the first-order correction
due to the interfacial deflection:

Q1 =

∫ η

−1

u1 dy ∼ px

2

(
−2

3
− η

)
+ A1

(
1

2
+ η

)
, (30a)

Q2 =

∫ d

η

u2 dy ∼ px

2m

(
−2d3

3
+ d2η

)
+ A2

(
−d2

2
+ dη

)
, (30b)
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Figure 11. The temporal evolution of the amplitudes of η, Γ and ωi (i = 1, 2) for a two-fluid
Couette flow with m> 1 and m < d2. d = 2,M = 1. k = 0.1. (a) m= 3, (b) m= 3.5, (c) m = 3.8.

where A1 and A2 are solved using (13), (14), (16), and (17), and given by

A1 =
m

(m + d)

[
1

2

(
1 − d2

m

)
px +

(
1

m
− 1

)
η

]
− d

(m + d)
MΓx,

A2 =
1

(m + d)

[
1

2

(
1 − d2

m

)
px +

(
1

m
− 1

)
η + MΓx

]
.
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Figure 12. The temporal evolution of the amplitudes of η, Γ and ωi (i = 1, 2) for
a two-fluid Couette flow with m> 1 and m > d2. m = 4.5, d = 2, M = 1. k = 0.1.

The zero-net-flow constraint Q1+Q2 = 0 requires the pressure gradient to be adjusted
as

px = αη + βMΓx + γ η2, (31)

with γ = (12/�)(1 − m)(m + d). Using (31), u1 in (18) can be obtained in terms of
η and Γx , and hence Q1. Applying the kinematic condition ηt + Q1x = 0 and the
surfactant transport equation Γt + ηx + [u1(y = η)]x = 0, we arrive at the following
set of evolution equations governing the weakly nonlinear dynamics:

ηt + α̂1ηx − β̂1MΓxx + γ̂1ηηx − χ̂1M(ηΓx)x = 0, (32)

Γt + α̂2ηx − β̂2MΓxx + γ̂2ηηx − χ̂2M(ηΓx)x = 0, (33)

where the coefficients of the nonlinear parts are given by

γ̂1 =
2

�
(d3 − d)(1 − m), χ̂1 =

d

(m + d)

(
(d + 1)

2
β + 1

)
,

γ̂2 =
2

m + d

(
1 − 6

�
(m + d)(d2 + d)

)
(1 − m), χ̂2 =

d

(m + d)
.

Equations (32) and (33) only retain quadratic terms for capturing the weakly non-
linear effects; they are only valid when η and Γ are small compared to the layer
thickness and the basic surfactant concentration, respectively. Here we do not attempt
to exploit detailed features thereof which might require intensive numerical simula-
tions. Rather, we discuss their qualitative aspects, which might provide some insight
into behaviour in the weakly nonlinear regime.

As shown in (32) and (33), there are two types of nonlinear terms: ηηx and (ηΓx)x .
Effects of ηηx are twofold. In (32), ηηx either amplifies or suppresses the interfacial
deflections along the interface, depending on the sign of ηx . Also, since ηηx has
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no effect on the interface midpoints (η = 0) and the maximum/minimum ηx =0, the
resulting interface wave becomes steepened, making the wavelength become shorter.
If the interfacial tension is sufficiently strong, this wave steepening can make the
stabilization robust so that instability can be arrested within the weakly nonlinear
regime. This is essentially the Kuramoto–Sivashinsky saturation of instability that is
commonly found in a variety of contexts in weakly nonlinear dynamics (Kuramoto &
Tsuski 1976; Michelson & Sivashinsky 1977; Bachin et al. 1983; Frenkel et al. 1987).
On the other hand, since Γ has already been excited by the shear-flow advection (via
α̂2ηx in (33)) in the early stages of the evolution, ηηx in (33) can exaggerate or lessen
the surfactant concentration perturbation, affecting the subsequent interface growth
caused by Marangoni forces. Note that the strength of the effects of ηηx depends
on the viscosity difference (1 − m) in view of γ̂1 and γ̂2. That is, if the viscosities of
the two fluids are equal or nearly matched, the ηηx effects will be absent or become
weak. In this case, the weakly nonlinear dynamics will be modulated solely by the
Marangoni term (ηΓx)x .

The Marangoni term (ηΓx)x , noting that both χ̂1 and χ̂2 are positive, can again
influence the evolution of η and Γ . Since (ηΓx)x comprises both η and Γx , the
effects can be determined by their phase difference. When Γx is in phase with η

(or Γ leads η by π/2), ηΓx � 0 throughout the interface, but it has maxima at the
interface crests/troughs (ηx = 0) and minima at the midpoints (η = 0). As a result,
(ηΓx)x increases (decreases) η for ηx > 0 ( < 0). Since it has no influence on the inter-
face midpoints, the effect steepens the interfacial wave, similarly to the way that the
Kuramoto–Sivashinsky term ηηx does. Meanwhile, since Γ leads η by π/2, (ηΓx)x also
promotes (suppresses) the amplitude of Γ for Γx < 0 (>0) while it has no influence
on Γ = Γx = 0. This, in turn, steepens the Γ profile for Γx < 0. Similarly, if Γx is out
phase with η (or Γ lags behind η by π/2), the actions of the Marangoni steepening
are just the reverse.

BP studied two-layer Couette–Poiseuille flow with surfactant and demonstrated a
possible nonlinear saturation of instability. Their analysis includes interfacial tensions
so that the Kuramoto–Sivashinsky mechanism could be responsible for the nonlinear
saturation. A saturated interfacial wave can be further steepened by the Marangoni
flow that might cause the wave to overturn and break, as BP conjectured. This
Marangoni steepening can be now understood by the (ηΓx)x effects mentioned above.

As discussed above, both ηηx and (ηΓx)x have an impact on the development
of the interface and surfactant concentration in the weakly nonlinear regime. They
mediate the prevailing effects from the linear parts of the evolution equations, or
vice versa. On the one hand, ηηx steepens an interfacial wave; it encourages the surfac-
tant concentration perturbation, and hence the Marangoni effects. But the induced
Marangoni effects can also stimulate or reduce the interface growth, depending on
which tendency prevails. On the other hand, (ηΓx)x can steepen both η and Γ waves;
similar Marangoni modulations again determine the subsequent development of the
system. The ultimate fate of the system seems to hinge on the interplay of these effects
in the course of the evolution.

Special attention should be paid to the m =1 case in which the ηηx terms are
absent. Inspecting (32) and (33) in line with the linear theory in § 3.2 reveals that
the Marangoni terms only participate to stimulate the interface growth, but are of a
higher order in (33) that is dictated by the shear-flow term α̂2ηx . Thus, (ηΓx)x only
steepens the η wave, but not for the Γ profile. The steepened interfacial wave then
magnifies the Γ perturbation via the shear-flow term, exaggerating the Marangoni-
induced interface growth and exacerbating the instability. We therefore speculate that
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such an instability cannot be inhibited by the nonlinear effects; it might still prevail
and persist in the nonlinear regime.

5. Concluding remarks
We have provided a rationale for the flow-induced Marangoni instability due to the

presence of surfactant. The mechanisms are illuminated by examining the long-
wavelength instabilities of both falling film and two-fluid Couette flows. For each
flow system, a coupled set of evolution equations for the perturbed interface and
surfactant concentration is derived. Both systems produce very similar sets of
evolution equations. These equations appear to be in very simple forms that only
contain contributions from base flows and Marangoni effects. This not only furnishes
a lucid way to clarify the instability mechanisms on an equation basis, but also
provides an alternative view of the underlying physics.

A base flow can rearrange the surfactant distribution and induce Marangoni flows
to trigger the interface growth, but this destabilizing effect can be reduced by two
effects; it is not only offset by the interface travelling motions, but also mitigated
by the Marangoni recoil on the surfactant concentration. The competition between
these effects determines the occurrence of instability although the presence of base
flows is necessary to the Marangoni instability (FH, BP). The interaction among these
effects is also identified by examining the initial value problems. More importantly, an
instability criterion can be established in line with the same rationale based on these
competing effects. A vertically falling film flow is neutrally stable due to surfactant
(WJ), but it could be destabilized by imposing shear (Wei 2005a). A two-fluid Couette
flow with surfactant can be stable or unstable (FH, BP). All these occurrences can be
explained using the same framework.

We have demonstrated that the long-wave evolution equations have the advantage
of facilitating interpretation. The insight gained from this work can complement
the previous studies (WJ, FH, BP). FH and Wei (2005a) studied the long-wave
stability problem using the standard stream function formulation that could make the
interpretation less straightforward. Basically, their proposed instability mechanism was
based on the phase difference between the interface and surfactant concentration from
the viewpoint of eigenfunctions. BP derived a set of long-wave evolution equations.
Although they did not present their equations in a form that would illuminate
mechanisms, they numerically identified such a phase difference that is necessary for
instability. The present work generalizes these studies; it shows the origin of the phase
difference as well as how it triggers the Marangoni interface growth on an equation
basis. Moreover, in contrast to these previous studies, we utilize the concept of vorticity
to explain instability mechanisms and demonstrate that stability/instability can be
explained using the phase difference between vorticity and the interface rather than
that between the surfactant concentration and the interface. The explanations given
by these previous studies were only for the Marangoni-induced interface growth;
reducing effects were not addressed.

In the weakly nonlinear regime, we derived a set of evolution equations relevant
to two-layer Couette flow and briefly discuss their qualitative features. Two types
of nonlinearity are identified here: the Kuramoto–Sivashinsky and the Marangoni
nonlinear terms. Both types of nonlinearity can cause the developments of the interface
and surfactant concentration perturbations. In particular, we find that the Marangoni
nonlinearity can also steepen waves, similar to the Kuramoto–Sivashinsky term. Since
the wave steepening can enhance the Marangoni effects that can either stimulate
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or reduce the linear growth, the ultimate fate of the system seems to hinge on the
modulation between linear and nonlinear effects.

While the current analysis neglects effects of inertia and surface tension for assessing
the interactions between base flows and Marangoni effects, there is no conceptual
difficulty in including these effects. However, there is an important aspect that cannot
be foreseen by the long-wave analysis. The long-wave analysis predicts that the growth
rates increase monotonically with the Marangoni number; it excludes the possibility
of a decrease in the growth rate due to the surface immobilization arising from large
Marangoni numbers or short wavelengths. This issue might be resolved by either
rescaling parameters in the problem, or by extending to the case with arbitrary-
wavelength disturbances. For the latter case, since most of the terms appearing in
the governing equations and boundary conditions are not simplified, it generally
becomes more difficult to identify interactions or dominant effects among various
factors even in the limit of Stokes flow (Halpern & Frenkel 2003; Pozrikidis 2003).
Nevertheless, as long as the wavelengths of disturbances are not long, inclusion of
surface tension effects is almost warranted. For planar systems, surface tension is
stabilizing and clearly compromises the Marangoni destabilization. For cylindrical
flow systems such as core–annular flows (Wei & Rumschitzki 2005; Wei 2005b),
however, the flow-induced Marangoni effect could enhance the capillary instability.
Applying the evolution-equation approach to these systems could be helpful to reveal
the features of their stability.

The research work was supported by the National Science Council of Taiwan under
Grant NSC93-2214-E006-021.
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